PROSIDING
Seminar Hasil Penelitian Terbaik Tahun 2014

Penanggungjawab
Dr. Achmad Poernomo, M.App.Sc

Redaktur
Indra Sakti, SE, MM
Taufiq Dwi Ferindera, B.Eng
Hilman Gumilar, S.Kom, M.Si
Siti Amania Raydesyana, S.Kom
Edi Wardana, SE
Ari Setyawan, SH
Kurniawan, S.Pi

Redaktur pelaksana
Desi Nurlestyoningrum, S.Pi
Nurfitasari, S.Pi

Badan Penelitian dan Pengembangan
Kelautan dan Perikanan
Desember 2014
KATA PENGANTAR

Kegiatan ini merupakan kali keempat setelah sebelumnya bernama Karya Tulis Ilmiah dimana merupakan ajang untuk memilih peneliti terbaik, akan tetapi pada tiga tahun terakhir konsep kegiatan tersebut diubah menjadi memilih hasil penelitian terbaik yang dilakukan oleh satker, sehingga output yang diharapkan akan muncul setiap satker yang dapat menghasilkan penelitian yang dapat mendukung visi dan misi Kementerian Kelautan dan Perikanan.

Sebagai apresiasi terhadap para peneliti pemenang hasil penelitian terbaik tersebut, Menteri Kelautan dan Perikanan memberikan penghargaan khusus terhadap 3 judul penelitian terbaik kategori perikanan dan kategori kelautan yang diserahkan pada acara puncak Adibhakti Mina Bahari yang diselenggarakan di Gedung Minabahari III Kementerian Kelautan dan Perikanan pada tanggal 4 Desember 2014.

Akhirnya kami mengucapkan terima kasih kepada para evaluator yaitu Prof.Dr. Hari Eko Irianto, Prof.Dr. Ketut Sugama, Prof.Dr. Sonny Koeshendrajana, Prof.Dr. Ngurah N. Wiadnyana, Dr. Aryo Hanggono dan Dr. Sugiastra Wirasantosa serta berbagai pihak yang telah membantu terlaksananya kegiatan ini.

Jakarta, Desember 2014

Panitia Penyelenggara
PEMENANG HASIL PENELITIAN TERBAIK TAHUN 2014

A. Kategori Perikanan

<table>
<thead>
<tr>
<th>Peringkat</th>
<th>Judul</th>
<th>Pemakalah</th>
<th>Satker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PENGEMBANGAN VAKSIN BIVALEN UNTUK PENCEGAHAN PENYAKIT MOTILE AEROMONAD SEPTICEMIA DAN STREPTOCOCCOSIS PADA IKAN NILA (Oreochromis niloticus)</td>
<td>Taukhid, Angela Mariana Lusiastuti, Tuti Sumliti, Desy Sugiani dan Uni Purwaningsih</td>
<td>BPPBAT Bogor</td>
</tr>
<tr>
<td>2</td>
<td>TRANSMISI, EKSPRESI DAN DISTRIBUSI TRANSGEN (PhGH) SERTA PERFORMA PERTUMBUHAN IKAN LELE (Clarias gariepinus) TRANSGENIK F2</td>
<td>Huria Marnis, Bambang Iswanto, Rommy Suprapto, Imron, Raden Roro Sri Pudji Sinarni Dewi dan Narita Syawalia</td>
<td>BPPI Sukamandi</td>
</tr>
<tr>
<td>3</td>
<td>COST-EFFECTIVE APPROACH TO ESTIMATE UNREPORTED DATA: REBUILDING HISTORY OF LIFT-NET FISHING IN KWANDANG WATERS</td>
<td>Andhika Prima Prasetyo, Duto Nugroho, Lilis Sadiyah, Rudy Masuswo Purwoko, Ria Faizah dan Agus Setiawan</td>
<td>P4KSI Jakarta</td>
</tr>
</tbody>
</table>

B. Kategori Kelautan

<table>
<thead>
<tr>
<th>Peringkat</th>
<th>Judul</th>
<th>Pemakalah</th>
<th>Satker</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PENGOLAHAN LIMBAH GARAM UNTUK MENDAPATKAN MAGNESIUM HIDROKSIDA SEBAGAI BAHAN BAKU INDUSTRI</td>
<td>Sophia L. Sagala, Rikha Bramawanto, Dian S. Pratama, dan Ifan R. Suhelmi</td>
<td>P3SDLP Jakarta</td>
</tr>
<tr>
<td>2</td>
<td>TSUNAMI DAMPING PERFORMANCE OF COASTAL FORESTS IN PANGANDARAN AFTER THE 2006 JAVA TSUNAMI</td>
<td>Semeidi Husrin, Jaya Kelvin, Aprizon Putra, Joko Prihantono, Yudhicara, Aditya Hani</td>
<td>LPSDKP Bungus</td>
</tr>
<tr>
<td>3</td>
<td>BUOY PLUTO DAN UJI PERFORMANSI UNTUK PERINGATAN DINI PENCEMARAN PERAIRAN</td>
<td>Handy Chandra</td>
<td>P3TKP Jakarta</td>
</tr>
<tr>
<td>No</td>
<td>Judul</td>
<td>Pemakalah</td>
<td>Satker</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>PENGEMBANGAN VAKSIN BIVALEN UNTUK PENCEGAHAN PENYAKIT MOTILE AEROMONAD SEPTICEMIA DAN STREPTOCOCCOSIS PADA IKAN NILA (Oreochromis niloticus)</td>
<td>Taukhid, Angela Mariana Lusiastuti, Tuti Sumiati, Desy Sugiani dan Uni Purwaningsih</td>
<td>BPPBAT Bogor</td>
</tr>
<tr>
<td>4</td>
<td>TRANSMISI, EKSPRESI DAN DISTRIBUSI TRANSGEN (PhGH) SERTA PERFORMA PERTUMBUHAN IKAN LELE (Clarias gariepinus) TRANSGENIK F2</td>
<td>Huria Marnis, Bambang Iswanto, Rommy Suprapto, Imron, Raden Roro Sri Pujdi Sinarni Dewi dan Narita Syawalia</td>
<td>BPPI Sukamandi</td>
</tr>
<tr>
<td>2</td>
<td>COST-EFFECTIVE APPROACH TO ESTIMATE UNREPORTED DATA: REBUILDING HISTORY OF LIFT-NET FISHING IN KWANDANG WATERS</td>
<td>Andhika Prima Prasetyo, Duto Nugroho, Lillis Sadiyah, Rudy Masuwoto Purwoko, Ria Fatmah Danagus Setiyawan</td>
<td>P4KSDI</td>
</tr>
<tr>
<td>3</td>
<td>PENGGUNAAN PROBIOTIK UNTUK PENINGKATAN IMUNITAS PADA PRODUKSI BENIH DAN CALON INDUK UDANG Litopenaeus vannamei</td>
<td>Haryanti, Sari Budi Moria, Bagus Wardana, Fahrudin, IGN Permana, Ahmad Muzaki</td>
<td>BBPPBL Gondol</td>
</tr>
<tr>
<td>5</td>
<td>PERFORMA IKAN MAS (Cyprinus carpio) TRANSGENIK FOUNDER YANG MEMBAWA GEN IMMUNOGENIK TANAH KHV</td>
<td>Khairul Syahputra, Didik Ariyanto, dan Yogi Himawan</td>
<td>BPPI Sukamandi</td>
</tr>
<tr>
<td>6</td>
<td>EVALUASI TINGKAT PEMANFAATAN IKAN LAYANG (Decapterus spp.) DI LAUT JAWA – WPP 712 (EVALUATION OF EXPLOITATION ON RATE ON SCA MACKEREL (Decapterus spp.) IN JAVA SEA FMA – 712)</td>
<td>Setiya Triharyuni, Sri Turni Hartati dan Duto Nugroho</td>
<td>P4KSDI</td>
</tr>
<tr>
<td>7</td>
<td>SEPARASI STOK IKAN LAYANG (Decapterus spp.) DAN PERANANNYA DALAM PENGELOLAAN IKAN PELAGIS KECIL BERKELANJUTAN DAN EVALUASI WPP (WILAYAH PENGELOLAAN PERIKANAN): KASUS DI LAUT JAWA DAN SEKITAR SULAWESI</td>
<td>Suwarso dan Achmad Zamroni</td>
<td>BPPL</td>
</tr>
<tr>
<td>No.</td>
<td>Kategori Kelautan</td>
<td>Judul</td>
<td>Peneliti</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>PENGOLAHAN LIMBAH GARAM UNTUK MENDAPATKAN MAGNESIUM HIDROKSIDA SEBAGAI BAHAN BAKU INDUSTRI</td>
<td>Sophia L. Sagala, Rikha Bramawanto, Dian S. Pratama, dan Ifan R. Suhelmi</td>
<td>P3SDLP</td>
</tr>
<tr>
<td>9</td>
<td>TSUNAMI DAMPING PERFORMANCE OF COASTAL FORESTS IN PANGANDARAN AFTER THE 2006 JAVA TSUNAMI</td>
<td>Semeidi Husrin, Jaya Kelvin, Aprizon Putra, Joko Prihantono, Yudhicara, Adilya Hani</td>
<td>LPKSDKP</td>
</tr>
<tr>
<td>10</td>
<td>BUOY PLUTO DAN UJI PERFORMANSI UNTUK PERINGATAN DINI PENCEMARAN PERAIRAN</td>
<td>Handy Chandra</td>
<td>P3TKP</td>
</tr>
<tr>
<td>11</td>
<td>ANALISA KELEMBAGAAN PENGELOLA ENERGI SEBAGAI PENDUKUNG KEBIJAKAN PENGEMBANGAN ENERGI LAUT</td>
<td>Rizky Muhartono, Mira, Estu Sri Luhur, dan Siti Hajar Suryawati</td>
<td>BBPSEKP</td>
</tr>
<tr>
<td>12</td>
<td>THE VULNERABILITY ASSESSMENT ON USAFT LIBERTY UNDERWATER HERITAGE, TULAMBEN BALI, TO CHANGES IN THE PHYSICAL ENVIRONMENT</td>
<td>Nia Naelul Hasanah Ridwan, Semeidi Husrin, Gunardi Kusumah, Ilham A., Aprizon Putra, Hadi Sofyan</td>
<td>LPKSDKP</td>
</tr>
<tr>
<td>13</td>
<td>FITOREMIDIASI LOGAM BERAT DENGAN MENGGUNAKAN MANGROVE</td>
<td>Faisal Hamzah dan Yuli Pancawati</td>
<td>BPOL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Makalah Tidak Dipresentasikan</th>
<th>Peneliti</th>
<th>Pusat</th>
<th>Nomor Pustaka</th>
<th>Poin</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>IDENTIFYING SUMATRAN PEAT SWAMP FISH LARVAE THROUGH DNA BARCODING, EVIDENCE OF COMPLETE LIFE HISTORY PATTERN</td>
<td>Arif Wibowo dan Siswanta Kaban</td>
<td>BPPPU Palembang</td>
<td>171</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>ESTIMASI PARAMETER POPULASI TONGKOL BALAKI (Auxis thazard thazard) DI PERAIRAN SAMUDERA HINDIA BARAT SUMATERA</td>
<td>Hely Hartaty, Aini Chairunnisa Amalia, dan Rusjas Mashar</td>
<td>LPPT Benoa</td>
<td>183</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>ANALISIS TINGKAT KESEJAHTERAAN DAN KETIMPANGAN PENDAPATAN RUMAH TANGGA NELAYAN PELAGIS BESAR DI SENDANG BIRU, KABUPATEN MALANG, JAWA TIMUR</td>
<td>Maulana Firdaus dan Cornelia Minwantini Witomo</td>
<td>BBPSEKP</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>INDUKSI PEMATANGAN GONAD DAN PENINGKATAN TINGKAT PEMBUAHAN TELUR INDUK UDANG WINDU Penaeus monodon MELALUI RANGSANGAN HORMONAL TANPA ABLASI MATA *</td>
<td>Asda Laining, Samuel Lante, Usman</td>
<td>BPPBAP Maros</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>18</td>
<td>SKREENING HERBAL MANGROVE DARI BEBERAPA LOKASI DI SULAWESI SELATAN SEBAGAI SUMBER ANTI BAKTERI Vibrio harveyi PENYEBAB PENYAKIT PADA UDANG WINDU Penaeus monodon</td>
<td>Muliani, Nurhidayah, dan Koko Kurniawan</td>
<td>Maros</td>
<td>215</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>PRODUKSI ENZIM SELULASE DARI BAKTERI TS2B YANG DIISOLASI DARI RUMPUT LAUT DAN PEMANFAATANNYA DALAM MENGHIDROLISIS KULIT UBI KAYU DAN DAUN UBI KAYU SEBAGAI BAHAN BAKU PAKAN IKAN</td>
<td>Irma Melati, Mulyasari, Mas Tri Djoko Sunarno, Maria Bintang, dan Titin Kurniasih</td>
<td>Bogor</td>
<td>231</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>KOMPOSISI DAN DISTRIBUSI TEMPORAL LARVA IKAN DI PERAIRAN KARANG KEPULAUAN KARIMUNJAWA, JAWA TENGAH</td>
<td>Mujiyanto, Hendra Satria dan Widihaningsih</td>
<td>Jatiluhur</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>PEMBUATAN EARLY SYSTEM INDICATOR (ESI) DAN APLIKASINYA UNTUK DETEKSI TINGKAT KESEGARAN IKAN</td>
<td>Rudi Riyanto, Irma Hermana, Singgih Wibowo</td>
<td>BBPPPBBKP</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>PEMBENTUKAN RAINBOW PEROT MELALUI HIBRIDISASI ANTARGENUS</td>
<td>Tutik Kadarini, Siti Zuhriyiah Musthofa dan Erma Primanita Hayuningtyas</td>
<td>Depok</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>APLIKASI EDIBLE COATING BERBASIS KITOSAN DAN EKSTRAK LINDUR (Bruguiera gymnorrhiza) PADA UDANG KUPAS VANNAMEI</td>
<td>Ema Hastarini, Indah Rosulva, dan Yadi Haryadi</td>
<td>BBPPPBBKP</td>
<td>279</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>RANCANG BANGUN DAN UJICoba ALAT TRANSPORTASI IKAN SEGAR RODA DUA (ALTIS-2)</td>
<td>Tri Nugroho Widianto, Bakti B sedayu, Wawan Hermawan dan Bagus S.B. Utomo</td>
<td>BBPPPBBKP</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>KOMUNITAS PERIFITON PADA EKOSISTEM PADANG LAMUN DI KAWASAN PULAU PARANG, KARIMUNJAWA, JAWA TENGAH</td>
<td>Yauk Sugianti dan Mujiyanto</td>
<td>Jatiluhur</td>
<td>299</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>PENCEGAHAN CITRA RASA BAY LUMPUR PADA DAGING IKAN BANDENG DENGAN CARA PENGENDALIAN PERTUMBUHAN ALGA BIRU HIJAU PADA TAMBAK TAWAR</td>
<td>Tatam Sutarmat, Tri Heru Prihadi, GN. Pernama dan Himawan Tirta Yudha.</td>
<td>Gondol</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>TEKNOLOGI PAKAN FORMULASI UNTUK KUALITAS WARNA IKAN KOI</td>
<td>I Wayan Subamia, Nina Meilisza, dan Sukarman</td>
<td>Depok</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Judul</td>
<td>Penyelidik</td>
<td>Pusat</td>
<td>Nomor</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>KARBON STOK DAN STRUKTUR KOMUNITAS MANGROVE SEBAGAI BLUE CARBON DI KEPULAUAN DERAwan, KALIMANTAN TIMUR</td>
<td>Restu Nur Afiati, Agustin Rustam, Terry L. Kepel, Nasir Sudirman, Mariska Astrid, Agus Daulat, Devi Dwiyanti Suryono, Yusmiana Puspitaningsih, Peter Mangindaan, Andreas Hutahaean</td>
<td>P3SDLP</td>
<td>339</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>APLIKASI TEKNOLOGI ECO-ELECTRIC FIELD (EEF) UNTUK MEDIA PENDEDERAN BUDIDAYA UDANG</td>
<td>Agus Cahyadi, Angela M. Lusiastuti</td>
<td>LPTK</td>
<td>353</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>PERAN LAMUN SEBAGAI BLUE CARBON DALAM MITIGASI PERUBAHAN IKLIM, STUDI KASUS TANJUNG LESUNG, BANTEN</td>
<td>Agustin Rustam, , Terry L. Kepel, Hadiwijaya L Salim, Marinka Astrid, Restu Nur Afiati, August Daulat, Peter Mangindaan & Andreas Hutahaean</td>
<td>P3SDLP</td>
<td>362</td>
<td></td>
</tr>
</tbody>
</table>
ABSTRAK

Kata kunci: mangrove, karbon stok, blue carbon

ABSTRACT

Mangrove forests is one of the parameters in Blue Carbon ecosystems, because contribute of mangroves using CO2 for photosynthesis and store it in biomass stock and sediments. Development of a negative impact on the environment such as the conversion of mangrove forests into fishponds and tourist areas. Establishment Miskam bay in Tanjung Lesung as a Special Economic Zone for tourism growth makes the area susceptible excessive use of environmental damage. On the basis of research to assess the mangrove community structure and the presence of carbon stocks current condition. The study was conducted at 8 to 12 April 2013. Methods of data collection with interesting mangrove transects 100 m then made squares 10x10 m (5 plots). Mangroves in the transect were identified and counted the number of stands, saplings and seedlings. Determination of a minimum of 30 trees selected biomass for each species, but to study one location enough 12 trees. Measurements of biomass provide nutrition information and supplies carbon in the vegetation as a whole or specific parts. The data obtained were analyzed in terms of quantity, namely the calculation of the potential carbon stocks using allometric equations. Shannon-Wiener index for the analysis of coastal ecosystem, ecosystem community structure and linkage analysis between the aquatic ecosystem and
the measurement results. Results of research conducted obtained total carbon stock in the coastal mangrove Cape Bohai - Tanjung Batu is equal to 0.18 to 673.01 tonnes C ha⁻¹. The highest value of carbon stock is absorbed by the vegetation Bruguiera gymnorrhiza while Rhizophora apiculata has a low amount of carbon stocks. Carbon stocks in mangrove sediments Cape Bohai - Tanjung Batu ranged from 0.06 to 6.77%, equivalent to 0.90 to 66.12 Mg ha⁻¹. Mangrove sediment carbon stock value has a value higher than the carbon stock of sediment in Tanjung Dimples, Banten, which amounted to 23.26 and 27.92 Mg ha⁻¹. Mangrove kind Lumnitzera littorea able to absorb carbon is greater than the mangrove species that dominate

Keywords: mangrove, carbon stocks, blue carbon

PENDAHULUAN

Gambar 1. Lokasi penelitian mangrove Kopulessan Derawan, Kalimantan Timur
METODE PENELITIAN

1. Kerapatan jenis (Di) adalah jumlah tegakan jenis i dalam suatu unit area
 \[D_i = n_i / A \]
 \[A = \text{Luas total area pengambilan sampe} \]
 \[n_i = \text{Jumlah tegakan jenis i} \]

2. Kerapatan relative jenis (RDi) adalah perbandingan antara jumlah tegakan jenis i (ni) dan jumlah total tegakan seluruh jenis (Σn)
 \[RDi = (n_i / Σn) x 100 \]
 \[n_i = \text{Jumlah tegakan jenis i} \]
 \[Σn = \text{Jumlah seluruh tegakan} \]

3. Frekuensi jenis (Fi) adalah peluang ditemukannya jenis i dalam plot yang diamati
 \[F_i = p_i / (Σp) \]
 \[p_i = \text{Jumlah pelat ditemukan jenis i} \]

4. Frekuensi relative jenis (RFi) adalah perbandingan antara frekuensi jenis i (Fi) dan jumlah frekuensi seluruh jenis
 \[RFi = (F_i / ΣF) x 100 \]
 \[F_i = \text{Frekuensi jenis i} \]
 \[ΣF = \text{Frekuensi seluruh jenis} \]

5. Penutupan jenis (Ci) yaitu perbandingan basal area jenis pada luasan unit area.
 \[C_i = ΣBA / A \]
 \[Ci = \text{Penutupan jenis} \]
 \[A = \text{Luas total area pengamatan} \]
 \[BA = \text{Basal area = τd/4} \]

6. Penutupan relatif (RCi) adalah perbandingan penutupan jenis ke-i dengan total penutupan seluruh jenis.
 \[RCi = (C_i / ΣC) x 100 \]
 \[RCi = \text{Penutupan relatif} \]
 \[ΣC = \text{Penutupan total seluruh jenis} \]
 \[Ci = \text{Penutupan jenis ke-i} \]

7. Indeks Nilai Penting (INPI) menggambarkan kedudukan ekologis suatu jenis dalam komunitas dengan melihat dominasi suatu jenis terhadap jenis lainnya. Nilai indeks ini berkisar antara 0 – 300 atau 1-3.
 \[\text{INPI} = \text{Indeks Nilai Penting} \]
 \[\text{RFi} = \text{Frekuensi relatif jenis} \]
 \[\text{RDi} = \text{Kerapatan relatif jenis} \]
 \[\text{RCi} = \text{Penutupan relatif jenis} \]

Bedan Penelitian dan Pengembangan Kriatani dan Perikanan 341
Tabel 1. Persamaan allometrik untuk perhitungan biomass mangrove

<table>
<thead>
<tr>
<th>Jenis</th>
<th>Persamaan</th>
<th>Sumber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aegiceras floridum</td>
<td>$B = 0.251 \rho (D)^{2.46}$</td>
<td>Komiyama et al. 2005</td>
</tr>
<tr>
<td>Avicennia sp</td>
<td>$B = 0.251 \rho (D)^{2.46}$</td>
<td>Komiyama et al. 2005</td>
</tr>
<tr>
<td>Avicennia marina</td>
<td>$B = 0.1848D^{2.60}$</td>
<td>Dharmawan dan Siregar, 2008</td>
</tr>
<tr>
<td>Bruguiera cylindrica</td>
<td>$B = 0.251 \rho (D)^{2.46}$</td>
<td>Komiyama et al. 2005</td>
</tr>
<tr>
<td>Bruguiera gymnorrhiza</td>
<td>$B = 0.0754D^{2.85}$</td>
<td>Kauffman & Donato, 2012</td>
</tr>
<tr>
<td>Ceriops tagal</td>
<td>$B = 0.251 \rho (D)^{2.46}$</td>
<td>Komiyama et al. 2005</td>
</tr>
<tr>
<td>Lumnitzera littorea</td>
<td>$B = 0.251 \rho (D)^{2.46}$</td>
<td>Komiyama et al. 2005</td>
</tr>
<tr>
<td>Lumnitzera racemosa</td>
<td>$B = 0.251 \rho (D)^{2.46}$</td>
<td>Komiyama et al. 2005</td>
</tr>
<tr>
<td>Rhizophora apiculata</td>
<td>$B = 0.043D^{2.63}$</td>
<td>Amira, 2008</td>
</tr>
<tr>
<td>Rhizophora mucronata</td>
<td>$B = 0.128(D)^{2.60}$</td>
<td>Fromard et al. 1998</td>
</tr>
<tr>
<td>Scyphiphora hydrophylacea</td>
<td>$B = 0.251 \rho (D)^{2.46}$</td>
<td>Komiyama et al. 2005</td>
</tr>
<tr>
<td>Sonneratia alba</td>
<td>$B = 0.3841(D)^{2.101}$</td>
<td>Kauffman & Donato, 2012</td>
</tr>
<tr>
<td>Xylocarpus granatum</td>
<td>$B = 0.1832D^{2.21}$</td>
<td>Talan, 2008</td>
</tr>
</tbody>
</table>

KARBON STOK = BIOMASSA PERSATUAN LUAS X 0,46 ATAU 0,5 ATAU HASIL ANALISA KARBON

HASIL DAN PEMBAHASAN

Karacteristik Ekosistem Kepulauan Derawan, Kalimantan Timur

| Species | Stasiun
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15</td>
</tr>
<tr>
<td>A. floridum</td>
<td>✅ ✅</td>
</tr>
<tr>
<td>Avicennia sp</td>
<td></td>
</tr>
<tr>
<td>B. cylindrica</td>
<td></td>
</tr>
<tr>
<td>B. gymnorrhiza</td>
<td>✅ ✅ ✅ ✅ ✅ ✅ ✅</td>
</tr>
<tr>
<td>Ceriops tagal</td>
<td></td>
</tr>
<tr>
<td>L. littorea</td>
<td></td>
</tr>
<tr>
<td>L. racemosa</td>
<td></td>
</tr>
<tr>
<td>R. apiculata</td>
<td></td>
</tr>
<tr>
<td>R. mucronata</td>
<td></td>
</tr>
<tr>
<td>S. hydrophylacea</td>
<td></td>
</tr>
<tr>
<td>S. alba</td>
<td></td>
</tr>
<tr>
<td>X. granatum</td>
<td></td>
</tr>
</tbody>
</table>

342 | Badan Penelitian dan Pengembangan Kelautan dan Perikanan
Pesisir Tanjung Bohei sampai dengan Tanjung Batu tercatat memiliki 12 jenis lamun dari 7 famili, diantaranya adalah:

- Aegiceras floridum
- Avicennia sp
- Lumnitzera littorea; Lumnitzera racemosa
- Bruguiera cylindrica; Bruguiera gymnorrhiza; Ceriops tagal; Rhizophora apiculata; Rhizophora mucronata
- Sonneratia alba
- Scyphiphora hydathae

Gambar 2. Jenis mangrove dan estimasi DBH di Tanjung Bohei – Tanjung Batu, Kepulauan Derawan

Tabel 3. Indeks Nilai Penting ekosistem mangrove di Kepulauan Derawan

<table>
<thead>
<tr>
<th>Stasiun</th>
<th>Jenis</th>
<th>Range dbh</th>
<th>Rdi</th>
<th>Rri</th>
<th>Rci</th>
<th>INP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S. alba</td>
<td>3.50 - 95.54</td>
<td>100.00</td>
<td>3.54</td>
<td>4.08</td>
<td>107.62</td>
</tr>
<tr>
<td>2</td>
<td>R. mucronata</td>
<td>5.41 - 28.34</td>
<td>77.78</td>
<td>3.54</td>
<td>1.99</td>
<td>63.99</td>
</tr>
<tr>
<td></td>
<td>B. gymnorrhiza</td>
<td>4.46 - 31.85</td>
<td>19.44</td>
<td>0.88</td>
<td>0.23</td>
<td>20.56</td>
</tr>
<tr>
<td></td>
<td>S. alba</td>
<td>4.78</td>
<td>2.78</td>
<td>0.88</td>
<td>0.00</td>
<td>3.06</td>
</tr>
<tr>
<td>3</td>
<td>R. mucronata</td>
<td>2.87 - 38.54</td>
<td>52.78</td>
<td>3.54</td>
<td>3.14</td>
<td>59.46</td>
</tr>
<tr>
<td></td>
<td>B. gymnorrhiza</td>
<td>10.19 - 46.18</td>
<td>33.33</td>
<td>2.65</td>
<td>1.66</td>
<td>37.64</td>
</tr>
<tr>
<td></td>
<td>L. racemosa</td>
<td>16.88</td>
<td>2.78</td>
<td>0.88</td>
<td>0.00</td>
<td>3.67</td>
</tr>
<tr>
<td></td>
<td>X. granatum</td>
<td>7.01 - 23.57</td>
<td>11.11</td>
<td>1.77</td>
<td>0.00</td>
<td>12.94</td>
</tr>
<tr>
<td>4</td>
<td>R. mucronata</td>
<td>8.28 - 19.11</td>
<td>8.51</td>
<td>0.88</td>
<td>0.18</td>
<td>9.58</td>
</tr>
<tr>
<td></td>
<td>B. gymnorrhiza</td>
<td>3.13 - 66.58</td>
<td>91.68</td>
<td>1.42</td>
<td>34.44</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R. mucronata</td>
<td>8.28 - 26.11</td>
<td>35.14</td>
<td>1.77</td>
<td>0.68</td>
<td>37.58</td>
</tr>
<tr>
<td></td>
<td>B. gymnorrhiza</td>
<td>10.19 - 41.72</td>
<td>10.81</td>
<td>0.68</td>
<td>0.13</td>
<td>11.82</td>
</tr>
<tr>
<td></td>
<td>L. littorea</td>
<td>3.34 - 11.15</td>
<td>27.03</td>
<td>0.88</td>
<td>0.05</td>
<td>27.97</td>
</tr>
<tr>
<td></td>
<td>S. hydrophyllacea</td>
<td>X. granatum</td>
<td>C. tagal</td>
<td>B. gymnorhiza</td>
<td>S. alba</td>
<td>R. mucronata</td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>------------</td>
<td>---------</td>
<td>---------------</td>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>6</td>
<td>3.18 - 6.69</td>
<td>10.19 - 73.25</td>
<td>5.41 - 34.71</td>
<td>9.55 - 90.13</td>
<td>5.41 - 34.71</td>
<td>3.82 - 13.38</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.22</td>
<td>6.41</td>
<td>39.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.88</td>
<td>0.88</td>
<td>2.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54.93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>R. mucronata</th>
<th>B. gymnorhiza</th>
<th>S. hydrophtyalla</th>
<th>L. littorea</th>
<th>S. alba</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>41.82</td>
<td>30.91</td>
<td>18.18</td>
<td>3.64</td>
<td>3.64</td>
</tr>
<tr>
<td></td>
<td>3.54</td>
<td>0.88</td>
<td>0.88</td>
<td>1.77</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>1.59</td>
<td>0.87</td>
<td>0.16</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>46.95</td>
<td>32.66</td>
<td>19.23</td>
<td>5.41</td>
<td>5.44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S. alba</th>
<th>R. mucronata</th>
<th>L. littorea</th>
<th>L. racemosa</th>
<th>B. gymnorhiza</th>
<th>A. floridum</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>35.03 - 181.85</td>
<td>4.78 - 29.30</td>
<td>12.10 - 54.14</td>
<td>10.83</td>
<td>4.14 - 38.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.98</td>
<td>46.51</td>
<td>18.60</td>
<td>2.33</td>
<td>18.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.77</td>
<td>2.65</td>
<td>0.88</td>
<td>0.88</td>
<td>2.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>0.64</td>
<td>0.94</td>
<td>0.00</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.75</td>
<td>49.81</td>
<td>22.20</td>
<td>3.21</td>
<td>21.52</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S. alba</th>
<th>R. mucronata</th>
<th>R. apiculata</th>
<th>A. floridum</th>
<th>L. littorea</th>
<th>X. granatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5.73 - 184.71</td>
<td>4.14 - 18.15</td>
<td>5.41</td>
<td>2.23</td>
<td>4.14</td>
<td>10.19 - 16.88</td>
</tr>
<tr>
<td></td>
<td>12.50</td>
<td>62.50</td>
<td>4.17</td>
<td>4.17</td>
<td>6.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.77</td>
<td>2.65</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.62</td>
<td>0.24</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.89</td>
<td>65.39</td>
<td>5.05</td>
<td>5.05</td>
<td>7.87</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S. alba</th>
<th>L. littorea</th>
<th>8.00 - 32.17</th>
<th>6.00 - 54.69</th>
<th>A. floridum</th>
<th>S. hydrophyllacea</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5.50 - 23.29</td>
<td>30.00</td>
<td>5.30</td>
<td>3.50</td>
<td>10.19 - 17.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>500.00</td>
<td>0.88</td>
<td>3.50</td>
<td>3.45</td>
<td>10.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20.17</td>
<td>0.09</td>
<td>107.88</td>
<td>107.88</td>
<td>10.19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S. alba</th>
<th>Avicennia sp</th>
<th>10.19 - 17.83</th>
<th>13.04</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>3.50 - 123.89</td>
<td>100.00</td>
<td>3.42</td>
<td>13.04</td>
</tr>
<tr>
<td></td>
<td>100.00</td>
<td>4.42</td>
<td>8.22</td>
<td>13.04</td>
</tr>
</tbody>
</table>

Tabel 4. Nilai total biomassa mangrove (ton/ha) di pesisir Tanjung Bohei – Tanjung Batu, Kepulauan Derawan Mei 2013

<table>
<thead>
<tr>
<th>Jenis</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. floridum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11,66</td>
<td>0,12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avicennia sp</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39,57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. gymnorrhiza</td>
<td>72,43</td>
<td>100,98</td>
<td>216,54</td>
<td>87,17</td>
<td>185,17</td>
<td>28,66</td>
<td>36,99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corophus tagal</td>
<td>106,92</td>
<td></td>
</tr>
<tr>
<td>L. littorea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50,20</td>
<td>275,40</td>
<td>0,56</td>
<td>55,91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. racemosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. apiculata</td>
<td></td>
</tr>
<tr>
<td>R. mucronata</td>
<td>98,44</td>
<td>100,86</td>
<td>131,90</td>
<td>28,70</td>
<td>53,37</td>
<td>90,01</td>
<td>57,90</td>
<td>22,83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. hydrophyllacea</td>
<td></td>
</tr>
<tr>
<td>S. alba</td>
<td>28,15</td>
<td>0,08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,63</td>
<td>216,02</td>
<td>96,19</td>
<td>29,12</td>
<td>29,53</td>
<td>86,99</td>
</tr>
<tr>
<td>X. grandiflora</td>
<td></td>
<td>17,47</td>
<td>70,40</td>
<td></td>
<td></td>
<td>8,28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Badan Penelitian dan Pengembangan Kelautan dan Perikanan
Gambar 1. Grafik hubungan antara diameter pohon dan biomassa jenis mangrove

Diameter pohon pada jenis yang berbeda dapat menghasilkan biomassa yang hampir sama besarnya, seperti pada *Lumnitzera litorae* dengan diameter sebesar 60 – 60 cm memiliki biomassa sebesar 3000-3500 kg selara dengan 3 - 3,5 ton. Jenis tersebut dibandingkan dengan diameter *Bruguiera gymnorrhiza* sebesar 90 – 100 cm memiliki biomassa >4000 kg atau sekitar 4 ton. Berdasarkan hal tersebut dapat diduga bahwa mangrove *Lumnitzera litorae* mampu menyerap karbon lebih besar dibandingkan dengan jenis mangrove yang mendominasi. Kondisi tersebut dapat berkaitan dengan daya serap pada setiap jenis, karena selain berkaitan dengan diameter pohon, biomassa juga dipengaruhi oleh beberapa faktor seperti unsur hara didalam tanah, kandungan air dan cahaya (O’Grady et al, 1996). Secara umum, biomassa pada akar mangrove memiliki nilai tertinggi dari bagian tanaman lainnya (Sutaryo, 2009). Pohon mangrove harus mampu beradaptasi dengan membentuk akar khusus untuk dapat tumbuh dengan kuat dan membantu mendapatkan oksigen (Kusmana et al, 2009).

Karbon Stok Mangrove Tanjung Bohei - Tanjung Batu Kepulauan Derawan

Nilai simpanan karbon tergantung dari biomassa yang dimiliki. Pada mangrove, semakin besar diameter pohon maka biomassa yang terkandung akan semakin besar sehingga semakin besar pula karbon yang diserap. Berdasarkan hasil konversi biomassa pohon terhadap nilai karbon, maka didapatkan kisaran total karbon pada wilayah pesisir Tanjung Bohei sampai Tanjung Batu adalah sebesar 0,16 – 6/3.01 ton C ha-1. Nilai karbon stok tertinggi diserap oleh vegetasi *Bruguiera gymnorrhiza* sedangkan *Rhizophora apiculata* memiliki jumlah karbon stok yang rendah. Stasiun 6 memiliki karbon stok yang tertinggi dengan kisaran sebesar 316,54 ton C ha-1 dengan estimasi diameter pohon antara 13,38 – 90,13 cm (keliling = 42 – 283 cm). Diameter pohon *Bruguiera gymnorrhiza*
tersebut masih lebih kecil bila dibandingkan dengan diameter pohon Sonneratia alba yang mencapai 222,48 cm atau keliling pohon sebesar 730 cm. Nilai karbon stok pada S. alba adalah sebesar 0,04 - 66,11 ton C ha-1.

Gambar 6. Peta sebaran mangrove dan total karbon stok mangrove (ton C ha-1)

Gambar 7. Karbon stok mangrove di setiap stasiun pengamatan

Faktor lingkungan juga berperan dalam proses penyerapan karbon. S. alba tidak dapat menyerap karbon secara maksimal karena tumbuh pada substrat yang kurang sesuai yaitu lumpur berpasir. Faktor pasang surut mempengaruhi karena S. alba lebih senang pada kondisi air tergenang sedangkan pada lokasi pengamatan, kondisinya adalah kering pada saat surut terendah. Penyerapan karbon pada tumbuhan dapat terjadi karena adanya proses fotosintesis pada tumbuhan. Tumbuhan menyerap karbon dari udara dan mengkonversinya menjadi senyawa organik melalui proses fotosintesis.
Tabel 5. Nilai total karbon stok mangrove (ton C ha⁻¹) di pesisir Tanjung Bohei – Tanjung Batu, Kepulauan Derawan Mei 2013

<table>
<thead>
<tr>
<th>Species</th>
<th>Carbon (ton C ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A. rodiuma</td>
<td></td>
</tr>
<tr>
<td>Avicennia sp</td>
<td></td>
</tr>
<tr>
<td>R. cylindrica</td>
<td>165.77</td>
</tr>
<tr>
<td>R. manihotisz</td>
<td>55.33</td>
</tr>
<tr>
<td>Corlosp linali</td>
<td></td>
</tr>
<tr>
<td>L. littorea</td>
<td>8.47</td>
</tr>
<tr>
<td>L. racamosa</td>
<td>9.42</td>
</tr>
<tr>
<td>R. spiculata</td>
<td></td>
</tr>
<tr>
<td>R. muncorata</td>
<td>47.60</td>
</tr>
<tr>
<td>S. hydrophylaceae</td>
<td>2.90</td>
</tr>
<tr>
<td>S. alba</td>
<td>13.94</td>
</tr>
<tr>
<td>X. granatum</td>
<td>8.65</td>
</tr>
</tbody>
</table>

Sedimen Ekosistem Mangrove

Berdasarkan hasil pengamatan didapat rata-rata kedalaman sedimen di ekosistem mangrove Teluk Miskam berkisar antara 35 - 175cm. Tekstur sedimen di pesisir Perairan Kepulauan Derawan didominasi oleh lumpur dan pasir yang dapat dikategorikan sedimen dengan tekstur halus. Jenis sedimen pada ekosistem mangrove lebih didominasi oleh substrat lumpur yang sedikit berbeda dengan jenis sedimen pada ekosistem lamun yang cenderung didominasi oleh pasir berlumpur.

![Gambar 8. a) Jenis sedimen di Tanjung Bohei-Tanjung Batu dan b) irisan sedimen di stasiun 9](image)

Simpanan karbon atau karbon stok dalam sedimen mangrove di Tanjung Bohei sampai Tanjung Batu berkisar antara 0,06 - 6,77% atau setara dengan 0,90 - 66,12 Mg ha⁻¹. Nilai karbon stok sedimen mangrove tersebut memiliki nilai yang tinggi dibandingkan dengan karbon stok sedimen di Tanjung Lesung, Banten. Namun, nilai karbon stok sedimen mangrove tersebut terlihat rendah bila dibandingkan dengan hasil penelitian Blue Carbon 2012 yang memiliki nilai simpanan karbon sedimen mangrove di pulau-pulau Kepulauan Derawan sebesar 11,80 – 26,05%.

Kandungan karbon sedimen mangrove tertinggi berada di stasiun 5 pada kedalaman 51-55 cm sebesar 66,12 Mg ha-1 sedangkan nilai karbon stok terendah 0,90 Mg ha-1 berada di stasiun 13 pada permukaan (1-5 cm). Pada stasiun 5 hanya terdapat jenis Ceriops tagal dengan nilai biomass sebesar 106,24 ton/ha dan karbon stok sebesar 55,33 ton C ha-1. Simpanan karbon belowground sangat mendukung ekosistem mangrove karena mampu memberikan nutrien pada mangrove sehingga dapat tumbuh dan menyerap karbon secara optimal. Hal ini dapat dibuktikan bahwa pada stasiun 4 dengan jenis mangrove yang mendominasi serta kandungan biomass dan karbon aboveground tertinggi yaitu sebesar 652,25 ton/ha dan 316,54 ton C ha-1 dengan diameter sebesar 9,55 - 90,13 cm. Distribusi karbon belowground menurut kedalaman pada setiap stasiun dapat dilihat pada profil berikut.

Pada profil dapat dilihat bahwa kandungan karbon sedimen mangrove tertinggi berada pada kedalaman 0,5-1,5m kemudian pada kedalaman 1,6-2m nilai simpanan karbon hampir sama dengan kandungan karbon di permukaan. Berdasarkan data tersebut dapat diduga bahwa nutrien dalam tanah juga lebih banyak terdapat pada lapisan 0,5-1,5m.
Gambar 11. Hubungan antara kandungan karbon organik dengan berat jenis tanah mangrove di Tanjung Bohei-Tanjung Batu, Kepulauan Derawan, Mei 2013

Gambar diatas menunjukkan hubungan antara kandungan karbon dalam persen dengan berat jenis tanah mangrove yaitu berat jenis tanah sebesar 0,5 – 2 g cm-3 mampu menyimpan karbon sebanyak 1 – 2%. Perbandingan kandungan konsentrasi karbon pada sedimen di perairan Kepulauan Derawan bervariasi. Rasio C:N sebesar 38:1 terdapat di stasiun 4 bersubsstrat lumpur, rasio C:N yang tinggi juga ditemukan pada titik 8 sebesar 36:1 dan rasio C:N pada titik 13 sebesar 20:1. Data tersebut menunjukkan bahwa ekosistem mangrove di Kepulauan Derawan memiliki kemampuan lebih baik dalam mengikat nitrogen sedangkan ekosistem lomun Kepulauan Derawan memiliki kemampuan lebih baik dalam mengikat karbon.

KESIMPULAN

Total karbon stok mangrove di pesir Tanjung Bohei - Tanjung Batu adalah sebesar 0,18 – 673,01 ton C ha-1. Nilai karbon stok tertinggi diserap oleh vegetasi Bruguiera gymnorrhiza sedangkan Rhizophora apiculata memiliki jumlah karbon stok yang rendah. Karbon stok sedimen mangrove di Tanjung Bohei - Tanjung Batu berkisar antara 0,06 – 6,77% atau setara dengan 0,90 – 66,12 Mg ha-1. Nilai karbon stok sedimen tersebut memiliki nilai yang tinggi dibandingkan dengan karbon stok sedimen di Tanjung Lesung, Banten yang sebesar 23,26 dan 27,92 Mg ha-1. Mangrove jenis Lumnitzera littorea mampu menyerap karbon lebih besar dibandingkan dengan jenis mangrove yang mendominasi.

DAFTAR PUSTAKA

Talan, MA. 2008. Persamaan penduga biomassa pohon jenis Nyrirh (Xilocarpus granatum Koenig. 1784) dalam tegakan mangrove hutan alam di Batu Ampar, Kalimantan Barat. Skripsi Fakultas Kehutanan IPB Bogor